Cold Treatments

INTERVENTION SUMMARY

<table>
<thead>
<tr>
<th>Status</th>
<th>Currently Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>End of line chilling or freezing</td>
</tr>
<tr>
<td>Intervention type</td>
<td>Cooling of carcasses</td>
</tr>
<tr>
<td>Treatment time</td>
<td>24-36 hours</td>
</tr>
<tr>
<td>Regulations</td>
<td>Accepted worldwide</td>
</tr>
<tr>
<td>Effectiveness</td>
<td>Fair: 0.3-0.7 log reduction</td>
</tr>
<tr>
<td>Likely Cost</td>
<td>Depends on type of chilling system eg. blast, plate etc.</td>
</tr>
<tr>
<td>Value for money</td>
<td>Fair</td>
</tr>
<tr>
<td>Plant or process changes</td>
<td>Installation of powerful refrigeration units will be needed for ultra-low temperature chilling. Spray chilling will require tubing and spray nozzles installed. Most systems should retro-fit into existing chill rooms</td>
</tr>
<tr>
<td>Environmental impact</td>
<td>Refrigeration equipment requires energy.</td>
</tr>
<tr>
<td>OH&S</td>
<td>Spray systems result in wet, slippery floors. Ultra-low temperature chilling can result in ice formation inside the chill room. Staff should wear appropriate protective clothing including gloves.</td>
</tr>
<tr>
<td>Advantages</td>
<td>Spray chilling can give a whiter fat colour on the external primal surface.</td>
</tr>
<tr>
<td>Disadvantages or Limitations</td>
<td>The microbial reduction is slight Carcasses chilled to a very low surface temperature may be more difficult to bone and in most cases will incur a financial penalty at slower boning speeds.</td>
</tr>
</tbody>
</table>
Cold Treatments

Chilling slows the growth of most bacteria and temperatures just above the freezing point can kill or injure bacteria. Ice crystals may form within the bacteria and rupture the cell membrane, or chemical changes may occur which kill the organism. Chilling is the most widely used method for the preservation of meat (Ingram and Mackey 1976). Whatever the final microbial load of the meat, the maximum potential shelf-life will be achieved if the non-frozen meat is held at -1.5°C and for each 2-3°C rise in temperature, the storage life will halve (Gill 1986). Air chilling is most commonly used in the Australian Meat industry, but spray chilling, as used in the US, or blast chilling (ultra-low temperature) may be considered.

Conventional chilling can reduce the microbial populations on carcasses by 0.3-0.7 log (Nortjé and Naude 1981; Thomas et al. 1977) and can reduce E. coli counts by up to 2 log over 24-36 hours (Bacon et al. 2000), but there is little effect on microbial populations when spray-chilling is used (Greer and Dilts 1988, Kinsella 2006)). Ultra-low temperature chilling has been suggested as potentially being more effective with regard to microbial inactivation, but researchers working on pork carcasses found little difference in the efficacy of conventional chilling versus ultra-low temperature chilling on the reduction of bacterial numbers on the carcasses, whether they were skin-on or skin-off (Chang et al. 2003). Spray chilling is commonly practiced in North American meat processing but has had limited uptake in Australia. Some studies have suggested the incorporation of an organic acid and acidified sodium chlorite into a spray chilling system. If an establishment chooses to apply this technology, it must satisfy the Food Standards Code definition of a processing aid (FSANZ 2006) i.e. there is no residue on the final product. Spray chilling should result in no increase in carcass weight. In export-registered establishments, the process will be subject to AQIS approval.

In the poultry sector, research has been focussed on crust freezing, where the outer surface of the meat is rapidly frozen, then thawed before the freeze can penetrate into the tissue. Freeze-thaw cycles can reduce Salmonella Typhimurium on poultry wings (Olson et al. 1981), using a combination of CO₂ freezing followed by microwave defrosting. These authors achieved substantial reductions in microbial load from initially already low levels of 0.9 log cfu/cm² to 0.02-0.05 log cfu/cm². It is important to note that as initial levels are reduced, it becomes increasingly difficult to remove the residual microbial contamination.
After a slaughter floor intervention step, some bacterial cells remain alive, but injured, and they can recover to cause spoilage or food-poisoning. Good chilling practices can elicit a further 0.5-2 log reduction in microbial load due to death of injured cells which, through their injury, are more susceptible to cold stress (Gill and Bryant 1997; McEvoy et al. 2004; Chang et al. 2003).

Novel Technology

There is a Japanese patented system called CAS (Cells Alive System) freezing which involves magnetism and modulated waves of cold air. Conventional freezing freezes the product from the outside in, and thus penetration of the cold to the centre of the food gets more difficult as the exterior freezes solid. The CAS technology claims to retain the texture and flavour of food by first supercooling the product, then freezing it. Supercooling is achieved by subjecting the target product with a low-intensity magnetic field, which lowers the freezing temperature of the product. Thus the entire body of the product can be uniformly cooled below freezing point without freezing occurring. Then, when the magnetics are turned off, the products’, supercooled body freezes quickly and uniformly, suppressing the migration of fats and oils, and the formation of ice crystals. This technology is not yet available in Australia but is distributed by ABI (Japan).

Oscillating magnetic fields themselves have shown some promise as a means of reducing microbial numbers on foods. A technique involving passing foods through an electromagnetic coil emitting pulses of oscillating magnetic fields was patented in 1985 by Maxwell Laboratories Inc (Anon 1985), which claimed that microorganisms could be killed or deactivated without affecting the organoleptic properties of the food. The theory was that rapid variations in magnetic field would rupture the DNA within the microbial cells. The patent claimed 2-3 log reductions in microbial counts in milk, yoghurt, juice and dough, with minimal treatment times. A single pulse of intensity 5-50 Tesla at a frequency of 5-500 kHz, reduced microbial numbers by 2 log, and treatment times of 25µ sec to 10 msec were used to successfully decontaminate milk, yoghurt and dough (Hofmann 1985, cited by Pothakamury et al. 1993).
Proponent/Supplier Information

Realcold Milmech Pty (Aust) Ltd
 Colin Giles or Roy Robinson
 2/45 Boyland Avenue
 PO Box 68, Coopers Plains, QLD4108
 Ph: +61 7 3277 0100
 Fax: +61 7 3277 0173
 Email: sales@realcoldmilmech.com
 Website: www.milmech.com

Tri Tech Refrigeration
 43-47 Northgate Drive
 Thomastown
 Victoria 3074
 Phone: +61 3 9465 0099
 Fax: +61 3 9464 1327
 Website: www.ttrerig.com.au

Scantec Refrigeration
 360 Lytton Road, Morningside, QLD
 Ph: +61 7 3370 6501
 Fax: +61 7 3370 6511
 Email: sales@scantec.com.au

Gordon Brothers Industries
 21 Michael Street
 Brunswick
 Victoria 3056
 Phone: +61 3 9389 6666
 Fax: +61 3 9387 8878
 E-mail: info@gordonrefrig.com.au
 Website: www.gordonrefrig.com.au
Ice King Ozice Australia
PO Box 2230
Victoria 3121
Phone: +61 3 9421 3172
Fax: +61 3 9427 7250

ABI Institute for Technology
Tokatsu Techno Plaza
Kashiwa City Chiba
Japan
Contact: David Doral (Meat & Livestock Australia)

References

